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PREFACE

This technical report covers the work performed under Contract NAS 1-18533. This

research is being funded by the Langley Research Center of the National Aeronautics and Space

Administration (NASA), Hampton, VA. The program is being conducted under the technical

direction of Mr. Dick Royster of the Metallic Materials Branch in the Materials Division of the

NASA Langley Research Center.

The work presented here was performed during the period November 1987 to December

1988 by Grumrnan Corporation (Bethpage, NY) and the Allied-Signal Corporation (Morristown,

NJ).
The materials fabrication, base-line mechanical property evaluation, and microstructural

characterization were performed by the Alloy Development group of the Metals and Ceramics

Laboratory within the Corporate Technology section of Allied-Signal Inc. The evaluation of

superplasticity, diffusion bonding and additional mechanical properties were performed by the

Structural Materials group of the Corporate Research Center, Corporate Technology, Grumman

Corporation.

Program Principal Investigator: Dr. E.Y. Ting

Grumman Corporate Research Center
A02-26

Bethpage, New York 11714

Grumman Principal Investigator: Dr. E.Y. Ting
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1. INTRODUCTION

High strength, high temperature, lightweight structural materials are critical to the aero-

space industry. Although conventional aluminum alloys have excellent strength-to-weight ratios

at temperatures up to 180°C (356°F), structural applications at higher temperatures must rely on

heavier titanium alloys. However, advanced dispersion-strengthened aluminum alloys could

operate at temperatures up to 400°C (752°F) while still retaining useful properties. Produced by

rapid solidification, these high temperature aluminum (HTA) alloys can effectively replace

titanium alloys and reduce structural weight of advanced engines and aerospace vehicles.

Weight can be further reduced through innovative design of efficient multi-sheet structures using

advanced forming and joining methods such as superplastic forming and diffusion bonding (SPF/

DB). These methods, used either individually or in a combined process, are advantageous manu-

facturing techniques for multisheet structures. !._ SPF/DB technology has already been success-

fully demonstrated using titanium alloys and is currently being developed for other alloy sys-

tems, such as aluminum alloys.

By virtue of the ultra-fine grain microstructure imparted to the HTA alloys during rapid

solidification, similarities exist between them and conventional aluminum alloys that can be

superplastically formed and diffusion bonded. The beneficial influence of small grain size on

SPF has been clearly established and, recently, the dependence of diffusion bonding on grain size

for an aluminum alloy has also been demonstrated. ( The current work was undertaken to deter-

mine if superplastic forming and diffusion bonding techniques could be applied to dispersion

strengthened A1-Fe-V-Si alloys. The effects of dispersoid volume fraction, dispersoid size,

elevated temperature exposure, deformation rate, and bonding pressure on alloy behavior related

to superplastic forming and diffusion bonding were characterized. The microstructure and me-

chanical properties were also evaluated.
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2. BACKGROUND

O

2.1 HIGH TEMPERATURE ALUMINUM (HTA) ALLOYS

Aluminum alloys are atwactive for weight-critical aerospace structural applications

because of their high strength, low density, and ease of fabrication. High strength is achieved in

conventional aluminum alloys through alloying and subsequent heat treatment to generate a fine

distribution of strengthening precipitates within the microstructure. Conventional high-strength

aluminum alloys are limited to a maximum service temperature of less than 180°C (35601 ")

because of the limited thermal stability of the strengthening precipitates. At elevated tempera-

tures, coarsening or dissolution of the strengthening phase results in rapid strength loss. During

the past decade considerable attention has been devoted to the development of HTA alloys

capable of competing with high temperature materials, such as titanium alloys, on a specific

strength and stiffness basis up to 375°C (700°F). The nearly twofold increase of the useful

temperature range of aluminum alloys has been achieved using newly developed rapid solidifica-

tion technology. The HTA alloys are strengthened by fine dispersoid particles that are formed

from a supersaturated alloy condition generated during rapid solidification. These dispersoid

particles have significandy more thermal stability than the precipitates found in conventional

age-hardening aluminum alloys. Given the low density of aluminum alloys in general, HTA

alloys show remarkable specific properties at temperature up to 400°C (75201=). The resulting

stiffness of the HTA alloys is also increased because the dispersoids are of greater modulus than

pure aluminum. The application of these new HTA alloys could extend the temperature limit to

which aluminum alloys are used and, thereby, result in major weight savings.

AI-Fe-V.Si Alloys. Dispersion strengthened alloys derive their strength from the interac-

tion of insoluble particles and dislocations. Thermal stability of the strengthening phase requires

that the strengthening particles have low solubility and diffusivity in aluminum, and a spherical

or polygonal morphology to reduce interface stress. Furthermore, some degree of interracial

coherency is desired between the dispersoid and the matrix to reduce interface energy to lessen

the driving force for coarsening. The implementation of these requirements will reduce the

growth kinetics at elevated temperatures. Several alloy systems have emerged that report sub-

stantial improvements in the elevated temperature strength of aluminum by the application of

these ideas. Most of these systems are based on AI-Fe or A1-Cr systems with the addition of

ternary and/or quaternary elements to provide additional binary strengthening dispersoids; s's to

stabilize the existing binary intermetallics;" or to formulate ternary and/or quarternary intermetal-

tics with a more symmetrical lattice." The A1-Fe-V-Si system of alloys can thus be categorized

in the latter classification, whereby the quarternary additions of V to AI=Fe 2 Si alloys stabilizes

the cubic Ai_3 (Fe,V) 3 Si phase over the hexagonal AIsF%Si and monoclinic AI3Fe phases that

would normally form in the absence of these additions. This cubic phase can, in general terms,

be stabilized with most other body-centered cubic (BCC) elements? _n

DispersoidPhase. The intermetallic that strengthens the AI-Fe-V-Si alloys has a general

composition close to Al:s(Fe,V)3Si. The characteristics of this intermetallic phase within the A1-

Fe-V-Si alloy system has been reported 'z and will only be briefly discussed here.

The silicide clispersoid structure is BCC,(Im3, 138 atoms/unit cell). _sThe atomic struc-

ture of this intermetallic can be described as: empty (Fe+V) icosahedra (i.e., with an unoccupied

PRECEOING PAGE BLANK NOT FILMED



center) situated at the sites of a BCC lattice; they arc all parallel and each icosahedron is con-

nected to its eight neighbors along their three-fold axes parallel to the <111> direction. The

connecting atoms form a slightly distorted octahedron. Each of these (Fe+V) icosahedra contains

an empty (AI+Si) icosahedron of the _same orientation and these_ure connoted through chains of

three slightly distorted (Al+Si) octahedra sharing their triangular faces (Fig. 1). However, only

five of the possible eight neigh_ring icos_edra are connec_ _th these octah_ Chins. The

remaining (AI+Si) atoms occupy positions primarily on the cube faces while still maintaining the

BCC symmetry. Based upon TEM analysis, it is thought that the silicide phase and the alumi-

num matrix have low interface energy due to ledge formation and a high atomic coincidence.

This greatly improves the coarsening resistance of the silicide phase.

The silicide phase is not a line compound; while the number of (Fe+V) atoms remain the

same, the Fe:V ratio can vary slightly. The AI:Si ratio can also be altered to some extent. The

composition variation for this silicide phase may be represented by the following: All,_o.

14.0(Fe,V)3 Si0.9._. These compositional variations can be _n_lled because the nominal Fe:V

and AI:Si ratios formulated in the alloy composition are carried throug h to the silicide phase in

the consolidated material. In addition, these effects have so far not proven to be as significant as

the effects of volume fraction dispersoid, grain size, and particle size distribution.

The modulus of the silicide dispersoid phase has been estimated to be 150 GPa ". The

thermal expansion coefficient for the silicide has been extrapolated to a relatively low value of

11.6 X10_ m/m/K.

2.2 SUPERPLASTIC FORMING (SPF)

$uperplastic materials exhibit stable plastic deformation behavior in tension at elevated

temperatures typically over half that of the melting point. They can be deformed to very large

strains at low stresses prior to failure. Using SPF, complex shapes can be fabricated in a more

direct and less costly manner than conventional fabrication techniques used for n0n-superplastic

materials". For example, the fabrication of thin-sheet structures can be achieved through a

simple cost-effectiveblow-formingmc_od simi'!artothoseu_in _e _ermoplastics industry.

5uperplasticBehavior. The phenomena of superplasticityismade possibleby the stabi-

lizationof inhomogencous deformation(commonly termed necking) through a highlyrate-

sensitivedeformationyieldstress.This rate-sensitiveyieldstressistypicallycharacterizedby

the simplifiedrelationship"

_=k_m (I)

where a istheappliedstress,_ isthe strainrate,and k and m areconstants.The strain-ratesen-

sitivityindex,m, isa measure of thecxtcntofdeformation stabilizationderivedfrom strainrate

effect.Both constantsarefunctionsof temperatureand material.As can be sccnin Eq. (1),any

localincreaseinstrainratedue tolocalizeddeformationresultsin an increasedflow stress,thus

stabilizingthe inhomogcncous deformation. Values of m typicallyinexcessof 0.4 correspond

tosuperplasticdcformation. In additiontotemperature,thevalue of m fora matcria]isoftcn

found to be a functionof strainrate.For most superplasticmaterials,a maximum value of m

existsatthe optimum strainratefor$PF. A recentreview of superplasticityhas been performcd

by Padmanabhan. _
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Other Contributions to Deformation Stability. In addition to a high strain rate sensitivity,

deformationstabilitycan alsobe achieved througha high strainhardening coefficient.The most

commonly used equationto describethe stress-strainbehavior ist7

o=k_
(2)

where k is a constant, ¢ is the total plastic strain, and n is a constant that depends on material and

temperature. At low temperatures, strain hardening occurs during initial straining and provides

sufficient stability for cold forming applications of many common engineering alloys.

In some alloys that exhibit strain rate sensitivity, the combined effects of strain rate and

su'ain hardening can delay the onset of deformation instability. "-') At the elevate.d temperatures

associated with SPF, strain based effects are typically associated with some microstructural

change such as grain growth or recrystallization. The combined effects of strain and strain rate

can be expressed as

ty=ke, = O)

Equation (3)only approximates the finalrelationshipbetween stress,strain,and swain rateon an

empiricalbasis.Itmakes no determinationas tothemechanisms involvedexcept thatthereisa

strainor strainratesensitivity.Since plasticstabilitycan arisefrom both strainand strainrate

effects,microstructuralevidence isneeded todetermine which mechanism isin effect.

MicrostructuralRequirement. The mechanism responsibleforsuperplasticityisgener-

allyrecognized tobe grainboundary deformation(sliding_ orcore/mantleflow2a.')with diffu-

sionalaccommodation. The ratelimitingstepisthediffusionaltransportOf atoms away from the

stressedregionand ismainly controlledby thegrainsizeof thematerial.Thus, a basicmicros-

tructuralrequirementforsuperplasticityinAI alloysisa stable,finegrainsizeatelevatedtem-

peratures. In addition,theabilityof the grainboundary tofreelydeform withoutseparation

under tensileloadsisalsorequired.As discussedforEq. (I),theinfluenceof temperatureand

strainrateareexpected tohave significantinfluenceon thedeformationbehavior of a supcrplas-

ticmaterial.Maximum superplasticityistypicallyachieved atan optimum strainratewhere the

m value ismaximized. For a given temperature,the optimum strainratetypicallyincreasesas

the grainsizeisdecreased. The Eq.

o,.L
L¢ (4)

with _:*equal to the optimum strain rate, L is the grain size and c equal to 2 has been proposed to

relate grain size to optimum sta'ain rate. _._' It is possible that given a submicron grain size, the

optimum strain rate for superplastic deformation can bc significantly increased.

Grain size can be stabilized in supcrplastic aluminum alloys using a distribution of fine

second phase particles such as the A13Zr particles used in commercial A1 SPF alloys. Thcsc

particles pin grain or subgrain boundaries and prevent rapid grain growth. Furthermore, the

matrix must also be free of large inhomogcneous particles that can nucleate grain boundary

cavitation. At the other cxtrernc, due to thc existence of a high volume fraction of large "second
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phase particles" in certain composite materials, internal stress plasticity has been observed.

Differences in expansion coefficients between the matrix and second phase constituents can

generate high internal stresses during thermal cycling. This internal stress hasbeen shown to

create a superplastic-like behavior in SiC-reinforced metal matrix composite and high ductility

can be achieved in these normally low ductility materials.

Because superplasticity is mainly achieved through grain boundary deformation and dif-

fusional transport, superplastically deformed materials show little or no evidence of dislocation

generation. The grain morphology encountered SPF is typically of an equiaxed fine grain.

With long duration exposure to SPF conditions, superplastic alloys may show an increase _n

grain size due to _n growth. For alloyS Which do not undergo dynamic recrystallization, the

initial microstructure often gives an indication of the alloy's potential for superplasticity behav-

ior.

2.3 DIFFUSION BONDING (DB)

The use of DB in conjunction with superplastic forming (SPF/DB) to produce integral

near-net shapes of titanium alloys has been very successful. The SPF/DB of aluminum alloys has

been severely impeded because of aluminum's stable surface oxide, which is a tenacious diffu-

sion barrier(4-6). Unlike titanium, which have oxides that easily dissolve in the metal during

heating, aluminum and its alloys form oxides that do not dissolve.

Typically, aluminum has been "solid state" bonded by methods that rely upon consider-

able mechanical deformation (up to 60% reduction in thickness) under high stress (up to 40,000

psi) to bring the surfaces together and to rupture the surface oxide barrier. In general, such high-

stress methods are not compatible with the constraints imposed by SPF technology. For example,

practical limitations set by production equipment dictate thai SPF gas pressures probably should

be limited to 1000 psi and, perhaps, should be much lower. Therefore, the development of a low

pressure DB technique combined with superplastic forming could significantly advance the

design of advanced structures. To this end, various approaches have been developed for low

pressure bonding of aluminum alloys. For example, one approach relies upon the use of diffu-

sion brazing with a variety of interlayers, such as Cu, 7.n, and AI-Si, which serve as melting

point depressants. =." The liquid phase that forms during bonding helps to displace the surface

oxide that allows a bond to form between the substrate metals. However, additional interfaces

can increase the oxidecontent at the bond line and can also lead t0the formation of undesirable

intermetallic compounds and brittle bonds. Another approach, developed at the Grumman

Research Center, depends upon proper surface cleaning combined with the use of a highly-

plastic surface layer to induce localized surface deformation during bonding to disrupt the oxide

layer;, thus, leading to intimate metal-to-metal contact and diffusion.

Research has shown that it is possible to produce high-strength diffusion bonds in alumi-

num alloy, u, High-strength bonds with grain boundary-like interfaces have been produced by

bonding superplastic 7475 A1 alloy at the superplastic forming temperature (516°C (960°F))

using very low pressures (.q017 _a (100 psia)) without diffusion aids or intermediate materials.

In general, the strength of bonds in the as-bonded and heat treated conditions are comparable to

those of the base metal. Results indicate that shear strength is time and pressure dependent and

that a minimum pressure-time condition must be satisfied to attain high strength bonds. More
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importantly, it has been identified that grain size has a major effect on bond strength. Fine

grained superplastic alloys were found to bond significantly better than coarse grain alloys.
Transmission electron microscopic observations of high-strength bonds revealed that the bond

interface was barely discernible, looked essentially like a normal grain boundary, and did not

contain obvious continuous layers or films of oxide. These results are of major significance

because they demonstrate that DB is greatly improved in alloys that have characteristic fine-
grained microstructures usually associated with superplasticity. The data lead to the conclusion
that improved DB is made possible by enhanced localized surface deformation caused by a f'me-
grained superplastic microstructure that leads to extensive oxide film disruption.
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3. PROGRAM PLAN
O

The objective of this work was to investigate the SPF and DB characteristics of disper-

sion strengthened HTA alloys based upon the A1-Fe-V-Si alloy system and to evaluate the effect

of such processing conditions on microstructure and mechanical properties. The results reported

here represent work performed during the period from November 1987 to March 1989 at the

Grumman Corporate Research Center (Bethpage, NY) and the Allied-Signal Corporate Technol-

ogy Center (Morristown, NJ).

3.1 ALLOY SELECTION

The strength of a dispersion strengthened alloy depends on the extent to which the motion

of dislocations can be retarded within the matrix through dislocation-particle interaction. Thus,

alloy strength is strongly determined by the volume fraction, size, and distribution of the

strengthening dispersoid phase. In order to evaluate the SPF and DB characteristics of the HTA

alloys, four alloy compositions and three dispersoid conditions were selected for examination.

The alloy dispersoid volume fractions were 8, 16, 27, and 36 volume percent. The size and

spacing of the dispersoids were controlled by extrusion and rolling at different temperatures.

3.2 MECHANICAL PROPERTIES DETERMINATION

Room and elevated temperature tensile properties, fracture toughness, and fatigue crack

growth rate testing were performed to establish base-line data. The properties of extruded and

sheet conditions, before and after exposure to typical service temperatures, were characterized.

Since fabrication using SPF or DB will likely require exposure to temperatures above 500°C

(932°F), properties after short-term high temperature exposure at these temperatures also were

determined. These data will help determine the possible manufacturing and application parame-

ters for the alloys.

3.3 SUPERPLASTIC EVALUATION

In the Al-Fe-V-Si alloys characterized by an ultra-f'me and stable grain size, it was antici-

pated that strain rate sensitivity might be encountered. Evaluation for superplastic behavior was

fwst performed at elevated temperatures at strain rates between lxl04Sand lxl0 3 s 1 . In addi-

tion, an investigation was conducted to determine if internal stress superplasticity could be

generated by rapid temperature cycling. Finally, deformation behavior under high (> lxl0 3 s")

strain rates were evaluated.

3.4 DIFFUSION BONDING EVALUATION

Because of the ultra-fine grain size of the rapidly solidified alloys, it was anticipated that

diffusion bonding of these alloys might be enhanced. Since likelihood of successful diffusion

bonding increases with temperature, the stability of the strengthening dispersoids must also be

considered. This was characterized by both microstructural and mechanical properties determi-

nation. The anticipated difficulty in DB of dispersion strengthened alloys was the coarsening of

the dispersoid. Diffusion bonding of the HTA alloys to another aluminum alloy system at a

lower temperature was also investigated to evaluate bonding at temperatures that will not coarsen
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the dispcrsoids. The DB behavior of dissimilar couples between 7475 aluminum alloy, a high-

strength precipitation hardened alloy, and the high temperature dispersion strengthened HTA

alloys was evaluated. This might offer a novel opportunity to produce hybrid structures.
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4. EXPERIMENTAL PROCEDURES

4.1 ALLOYS

Alloy Production. The four alloys, FVS0301, FVS0611, FVS0812, and FVSI212 were

rapidly solidified using planar flow casting and ribbon comminution technology developed at

Allied-Signal. The alloys were produced representing 8,16,27, and 36 volume percent of silicide

dispersoids, respectively. The alloys were solidified at cooling rates in excess of 10_K s "1 using

the planar flow casting technique. Ribbon approximately 5 cm wide and 25 p.m in thickness

were produced. The ribbons were then comminuted into -60 mesh (<250 p.m) powder prior to

being vacuum hot pressed into 11.5 cm (4.5 in.) diameter billets. Three 11 cm (4.3 in.) diameter

vacuum hot pressed billets approximately 3.2 kg (7.0 lb) each were made for each alloy. The

billets were extruded at the RMI extrusion plant (Ashtabula, OH) to 1.0 x 5.5 cm (0.4 x 2.2 in.)

cross-section bars at 385°C (725°F) except for the 1212 alloy which was extruded at 427°C

(800°F).

The extrusions were sectioned for baseline mechanical property testing. The remaining

portions of the extrusions were cut into 12.5 cm lengths for hot rolling on a 15.0 cm diameter

Stannett rolling mill. Graphite lubrication was used for rolling. To modify the final sheet mi-

crostructure, the cut sections from each alloy were rolled at 300, 400, and 500°C (572, 752, and

932°F). Rolling was performed in the extrusion direction until the 5.5 cm dimension was ap-

proximately 12.5 cm. Subsequently, the pieces were cross rolled to a final gauge of 2.0 ram. The

pieces were deformed approximately 15% per pass and were reheated after each pass to keep the

temperature as constant as possible in the extrusion direction. Baseline tensile data as well as

microstructural characteristics were determined for the sheet conditions.

Alloy Designation. The alloy name assigned to each of the AI-Fe-V-Si alloys by Allied-

Signal represents the approximate amount of alloying elements in each composition. The FVS

identifies the iron (Fe), vanadium (V), and silicon (Si) components; the digit(s) representing the

approximate weight percent (rounded to an integer) of Fe, V, and Si in the alloy respectively. In

further references to the alloy sheets, the temperature at which the sheet was rolled will be added

to its identification. For example, FVS 1212/500 will denote the FVS 1212 (approximately 12

w% Fe, 1 w% V, and 2 w% Si alloy) rolled at 500°C (932°F).

4.2 MICROSTRUCTURE EXAMINATION

Light microscopy samples were mechanically polished to a one micron finish and etched

in Keller's reagent prior to examination on a Lietz Ultraphot 17 (Allied-Signal) or a Leitz MM6

metallograph (Grumman). Transmission electron microscopy (TEM) foils were mechanically

thinned and electropolished in a 20% HNO 3- 80% CH3OH solution at -40°C (233K). TEM

microscopy was performed on a Philips EM400T microscope. Scanning electron microscopy

with energy dispersive x-ray and wavelength dispersive spectrography (SEM/EDX/WDS) analy-

sis was performed on a Jeol 840 (Allied-Signal) or an Amray 1000 scanning electron microscope

(Grumman). Grain size was measured using the Heyn intercept method. _ Values of mean

dispersoid radius, [, were determined from measurements made on approximately 200 silicide

particles.

A General Electric XRD-5 X ray unit was employed in conjunction with a Huber texture
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goniometer, a Siemens rate meter, and a scintillation counter for pole figure measurements. X-

ray intensity data were obtained for (111) planes of aluminum and fed directly into a computer to

construct pole figures demonstrating equal value contours.

4.3 MECH_CAL _T _ .......... _ _ _ _ _

Tensile Test. Mechanical tests were performed on samples of extruded bar and rolled

sheet. Tensile testing was performed according to ASTM Specification E8, B557, and E21.

Fatigue crack growth tests followed AS TM Standard E647. Fracture toughness tests were

according to ASTM E399, B645, B646, and E561. ....

Tensile tests were performed on an instron model 1125 screw-driven machine. Elevated

temperature tests were performed within an Instron box oven mounted to the test machine. Each

specimen was allowed to stabilize for at least 20 min. after reaching test temperature before

starting the tesL Temperature accuracy was to :l:2°C (:I:4°F). All tests were at a crosshead speed

of .011 mm/s (4.2 x 10"/s), resulting in a "nominal" swain rate (based upon the initial gauge

length) of 5.56 X 10" s"1. A computer was used to collect data and calculate results. Tensile test

data was plotted as load vs. crosshead displacement and the yield strength, ultimate tensile

strength, and tensile elongation were calculat_L The yield strength was determined by drawing

a tangent to the load-displacement curve at its steepest point, then drawing a parallel line corre-

sponding to 0.2%.plastic su'ain; the load at which this offset line intersected the load-displace-
ment curve was divid_ythe_ cross-s_nal'_ of the spec_n tO_veat the 0.2%

offset yield strength. The ultimate tensile strength (engineering tensile strength) is defined as the

maximum load during the test divided by the_itial cross-sectionaliSe elongation was

calculated by di_ng theplastic displacement at _mre from the load-displacement curve by

the initial gauge length. The reduction-in-area was calculated by direct measurement of the

failed specimen.

Tensile tests of the high-temperature aluminum extrusions were carried out in the longitu-

dinal direction (extrusion direction) at 250, 149, 232, and 316°C (77, 300, 450, and 600°F). A

small number of FVS0812.specimens were tested transverse to the extrusion direction at room

temperature. Tests were run using cylindrical specimens 4.75 mm (0.188 in.) in diameter with a

gauge length of 1.9 cm (0.75 in.), in accordance with the suggestion of ASTM E8 (gauge length

is four times the gauge diameter).

Room temperature tensile tests of sheet alloys were performed on flat specimens with a

gauge length of 1.9 cm (0.75 in.), a gauge width of 9.5 mm (0.375 in. ), and thickness equal to

that of the rolled sheet, 1.8-2.4 mm (0.070-0.095 in.). Samples were oriented transverse to the

rolling direction, but parallel to theex_sion_eetion, since the sheethad been cross-rolled.

ThermalStability. TO evaluate _e therm_ stability of the base alloys, tensile specimens

machined from the extrusion were exposed for 120 h at 399°C (750°F). Additional specimens of

extruded FVS0812 were exposed for 504 h at d00°C (750°F), and for 120 h at 455°C (850°F)

and 510°C (950°F). The tensile tests were carried out without removing the oxide layer, if any,

from the surface of the specimens.

The stability of the sheet material subjected to exposure temperatures representative of

hot SPF or DB processing was measured using specimens exposed to selected temperatures and

times. Exposure at 500°C (932°F) and 600°C (1112°F) of 1 and 4 h were performed. Tests were
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performed in the uniaxial SPF test system.

Fatigue Crack Growth. Fatigue crack growth testing of extruded FVS0611 and

FVS0812 was performed at room temperature on an MTS servohydraulic testing machine. The

tests were carried out on standard compact tension fracture mechanics specimens with a width of

40 mm (1.575 in.). A fatigue precrack was grown from the starter notch to 20% of the specimen

width under decreasing AK, at 10 Hz and with a stress ratio R (minimum stress divided by the

maximum stress) of 0.1. Crack length was monitored during fatigue precracking and cracking by

a compliance technique, measuring the crack opening displacement with a clip-on extensometer.

Crack lengths were calculated from compliance, and stress intensity from crack length, accord-

ing to equations presented in ASTM E399 and E561. Fatigue crack growth testing was per-

formed with the crack between 20% and 45% of the specimen width, at 10 Hz and R=0.1, under

increasing AK. Crack growth rates were calculated from a moving least squares fit of crack

length vs. cycle number.
Fracture Toughness. Following fatigue crack growth rate measurements, each specimen

was used for fracture toughness testing. The crack was opened at constant rate until fracture, and

toughness values were calculated from the plot of load vs. crack opening. According to E399

and B645, the provisional fracture toughness Kq was calculated; no Kq value was found to

represent the"valid" plane strain fracture toughness Klc. According to E561, the plane stress

fracture toughness Kc was determined from the crack resistance R-curve. This value is equiva-

lent to measurements made on wide center-cracked panels of sheet materials.

Other Tests. Superficial hardness was measured using a Rockwell Hardness Tester on

the "Rb" scale. Electrical conductivity was measured using an eddy current method with a

Verimet M4900 conductivity meter. Conductivity was measured in terms of true International

Annealed Copper Standard (IACS), percent conductivity.

4.4 SPF EVALUATION

Superplasticity behavior was evaluated using uniaxial tests at selected temperatures and
strain rates. An Instron model TM uniaxial test frame modified with a computer.controlled

variable speed drive and a rapid heating, four-element elliptical quartz lamp furnace were used.

The SPF test specimen geometry had a gauge section of 1.27 cm (0.500 in.) and a shoulder

radius of 1.59 mm (0.0625 in.) between the gauge and the grip regions. Specimen thickness was

that of the as-rolled sheet. Strain rates tested ranged from a low of approximately lots "t to a

high of 8.5 st. Most tests at swain rates below l0 3 st were performed using constant true strain

rate (i.e., grip velocity increased as specimen elongated). Tests at higher strain rates were per-

formed using constant engineering strain rate (constant grip velocity) due to the inability of the

data acquisition system to sample as a sufficiently fast rate. Using constant grip velocity, the

actual strain rate changes as the sample elongates, but as most of the A1-Fe-V-Si alloys showed

low elongation and as this work's objective was to characterized basic deformation behavior, the

magnitude of this error was acceptable. The load generated during testing was recorded by the

control computer (HP9836 with HP3497 data acquisition unit) or by a strip chart recorder

(Instron Model TM). The highest strain rate tests, at strain rates of 8.5 st, were performed at the

University of California, Davis in a constant swain rate servo-hydraulic machine. Elongation

after failure was determined by measurement of the final reassembled sample length.
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Mechanicalproperties after elevated temperature exposure were estimated by testing

samples exposed to isothermal soaks. The effect of applied stress during exposure was not con-

sidered and a first level approximation of mechanical properties was obtained. The sample

geometry used was that of the $PF specimen design.

4.$ DB EVALUATION

Diffusion bonding experiments were conducted on the AI-Fe-V-Si alloys in the as-rolled

condition in two different fixtures (one for low pressure and one for high pressure bonding).

Both fixtures permitted simultaneous argon gas pressurization at one side of the specimen and

vacuum (pressure - lxl0 _ torr) at the other side. The DB specimens used for shear testing

consisted of a pair of 2.0 mm (0.079 in.) thick rectangular blanks, approximately 17 mm (0.669

in.) wide and 30 mm (1.18 in.) long. The blanks were prepared for bonding by manual abrasion

using successively freer SiC grinding papers of 240, 320, 400, and 600 grit. Ultrasonic rinsing in

a high-purity solvent, such as acetone, and in distilled water followed. The rinsed surfaces were

then air dried with clean filtered air. Immediately prior to diffusion bonding, the dried surfaces

were abraded by metallic brushing.

Bonds were made between similar dispersion strengthened alloys and dissimilar couples

between 7475 aluminum alloy and selected dispersion strengthened alloys. Fine-grained, super-

plastic 7475 aluminum alloy sheet (2.0 mm ) was used to produce dissimilar bonds with the

dispersion strengthened alloys. The composition of the 7475 alloy (Schedule E, WE6 condition)

was reported as follows (wt%) : 5.7 Zn, 2.3 Mg, 1.6 Cu, 0.12 Fe, 0.22 Cr, 0.1 $i, 0.06 Mn, and

0.06 TL Bonding was conducted in a furnace using selecte d combinations of temperature

ranging from 500-625°C (932-1157°F), pressure ranging from 100-1000 psia (0.7-7 MPa), and

time froml-20 h. After heating, the bonding fixture was removed from the furnace and cooled in

air to room temperature. Selected dissimilar bonded (7475/AI-Fe-V-Si) specimens were heat

treated to the T6 condition by solution treating at 482°C (899°F) for 1 h, water quenching, and

then aging at 121°C (250°F) for 24 h.

The shear strength of diffusion bonds were determined by testing lap-shear specimens

machined from the bonded blanks. The shear strength of unbonded base metal alloys after ther-

mal exposure conditions also were determined in a similar manner. The shear specimens were

tensile loaded at a crosshead spee d of 0.008 mm/s (3.15 x 10"4in./s) at room temperature. A
minimum of three tests to failure were usually conducted for each condition. Microhardness

across the bonded region was determined with a Knoop diamond indentor with a 25 g load.

J

m

i

m

i

D

L_

w

: 7

w

gig

w

W

14

w



w

5. RESULTS AND DISCUSSION I : ALLOY CHARACTERISTICS

$.1 ALLOY COMPOSITION

Chemical analyses of the alloys indicated nominal compositions very close to target com-

positions as shown in Table 1.

Three compacts were prepared for each alloy. The compact identification along with the

total quantity of sheet produced is given in Table 2.

The surface quality and overall flatness of the sheet produced varied due to the use of a

small rolling mill. (Commercial production on a large mill produces excellent surface quality

and flamess.)

5.2 ALLOY MICROSTRUCTURE

Grain size. The average grain size (corresponding to a mean intercept length) for the ex-

trusions and sheets is listed in Table 3.

A typical TEM micrograph of the alloys after extrusion is shown in Fig. 2 and 3 for the

largest and smallest grain size condition. Typically, the" ultra-fine grain size is found to system-

atically decrease with increasing dispersoid volume fraction. This is in agreement with conven-

tional dispersion strengthened alloys. Grain size ranged from 1.25 _ for alloy FVS0301 con-

taining approximately 8 vol.% silicide phase to about 0.3 ttrn for alloy FVS1212 containing

approximately 36 vol. % silicide phase.

The grain size after hot rolling was not significantly different from that of the extrusion.

The small change in grain size after rolling suggest that the dispersoids are very effective at

pinning grain boundaries. Even at the lowest volume fraction investigated, no significant grain

growth occurred after rolling at 500°C (932°F).

For both extrusion and sheet, distinct grain boundaries can not be resolved under optical

observation, however, the flow pattern arising from the prior powder boundaries may be ob-

served. Light micrographs of the sheet samples of the alloys are shown in Fig. 4 to 15. TEM

micrographs of these same sheet samples are shown in Fig. 16 to 27.

Dispersaids. Average dispersoid size for exmasion and sheet is listed in Table 4. The dis-

persoids consisted of fine AI_3 (Fe,V)3Si particles.

In the as-extruded condition, the microstructure consists of under 50 nm dispersoids

within an ultra-fine grained matrix. Dispersoid size is observed to be independent of disper-

sold volume fraction. Dispersoids, especially in the higher volume fraction alloys tended to be

positioned at grain and/or subgraln boundaries. In all samples, average dispersoid particle size

was very similar. The slightly larger average particle size noted for alloy FVS1212 is likely to

be due to the higher extrusion temperature of 427°C (800°F) versus 385°C (725°F) used for the

other alloys.

In the sheet condition, the dispersoid size was found to generally increase due to rolling.

However, as can be seen from Table 4, the statistics involved with particle size determination

were not able to accurately resolve the actual average size but did allow the determination of

approximate sizes before and after hot rolling. It can be only qualitatively concluded that rolling

increased dispersoid size most notably in low dispersoid volume fraction alloys. An increase in

dispersoid size will ultimately reduce mechanical strength due to reduced dislocation interaction.

15



The maximum dispersoidsizeachieved afterroilingWas approx_teiy lessthan 100 tim foraii

but one condition. Isothermal coarsening rates previously measured for these dispersoids at

temperatures less than 500°C (932°F) suggest very low growth rates for the dispersoids. How-

ever, it has been reported that the imposition of an applied stress during compression creep

testing significantly increase the growth kinetics of the dispersoids, sl

The size distributions for silicide particles in extruded and rolled alloys are shown using

histograms in Fig. 28 to 35. In general, the shape of all distributions appear to display a log

normal characteristic. However, the distributions in the rolled sheet appear to display a slightly

broader range of particle size. The longer trails may be an indication that particles associated

with grain and/or subgrain boundaries coarsen at a faster rate than particles dispersed within the

grains.

Texture. The effect of hot rolling on texture in sheet samples were investigated for alloys

FVSO301 and FVS06i I rolled at 400°C (75301 =) and FVSO812 and FVSi212 rolled at 300°C

(572_F). The X-ray (I 1 I) pole figure are shown in Fig. 36. All of the alloys exhibited only a

weak fcc texture versus conventional ingot Al base alloys following similar thermomechanical

processing. Furthermore, the degree of texture appears to increase as the volume fraction of

dispersoid particles is decreased.

$.3 ALLOY MECHANICALPROPERTIES
Tensile Tests. The mechanical properties of the extrusions and sheets were measured at

room temperature and elevated temperatures at Grumman and Allied-Signal using different

specimen designs. Tests at elevated temperatures were performed to determine "as-received"

strengths for comparison to post processing s/l"ength.

The tensile properties of the extruded alloys are summarized in Table 5 and shown in Fig.

37. The variation in properties as a function of temperature and dispersoid volume fraction is

clearly shown. A steady decrease in the strengths of the alloys with increasing temperature can

be observed with a minimum in elongation at intermediate temperatures (150°C (302°F)). This

has been attributed to solute drag: 2 The increased strength and reduced ductility with increasing

dispersoid content can also be clearly seen.

The average of three transverse tensile tests of extruded FVS0812 at room temperature

showed a yield of 374 MPa (54.3 ksi), an ultimate tensile strength (UTS) of 443 MPa (64.3 ksi),

an elongation of 14.1% and a reduction in area of 32%. Orientation appears to have very little

effect on the strengths, although ductilities in the longitudinal direction are significantly higher

than in the transverse direction.

The effect of rolling temperature on room temperature tensile behavior is summarized in

Table 6. Tensile properties are similar in the extrusions and in the sheet rolled at the lowest tem-

perature, with possibly a slightincrease in yield strength due to additional dispersoid precipita-

tion at 300°C (572°F). As the rolling temperature is increased, the strengths decrease and elon-

gation increases, as shown in Fig. 38. The rolled sheet exhibits the same trends of increasing

strength and decreasing elongation with increasing dispersoid content as were found in the parent

exu'usions. The observed lower than normal elongation in the FVS0611/400 sample occurred due

to delamination of the specimen, followed by premature fracture; this can probably be traced to

local defects within the microstructure generated by improper powder handling or rolling proce-
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durcs.The potentialforlow shearstrengthinpowder metallurgybased alloysiscommonly

associated with contamination of the powder phase and the alinement of these contaminants

during rolling.

The tensile strength and elongation of the AI-Fe-V-Si sheets at 200 and 315°C (392 and

60001: ) are plotted in Fig. 39. The trends observed at room temperature arc also evident. It can

be observed that the higher dispersoid volume fraction alloys result in higher strength and lower

elongation. It is also evident a lower rolling temperature results in higher strength and lower

elongation. At 315°C (600°1), the effect of rolling temperature on tensile strength and elonga-

tion is less significant than at lower temperatures for the higher volume fraction alloys. The

typical stress strain curve obtained from these tests is represented by Fig. 40. The behavior is

one of no significant strain hardening, but gradual decrease in engineering stress is a result of

broad necking. Failure is preceded by localized necking. This is the same behavior observed at

room temperature. Other than due to the geometry change observed during deformation, there is

no evidence of true strain softening.

Table 7 and Fig. 41 summarizes the effect of thermal exposure on the room temperature

tensile behavior of the alloys. Service exposure temperatures of up to 400°C (750°F) arc antici-

pated for these alloys and thus no significant microstructurc degradation is expected up to this

temperature. There is essentially no effect of a 120 h exposure at 400°C (750°1) on the proper-

ties of any of the extruded alloys. FVS0812 exhibits insignificant variations in tensile properties

following 120 h or 504 h at 400°C (750°F) and 120 h at 455°C (850°1). Following 120 h at

510°C (950°1) the yield and tensile strengths of FV50812 have been reduced by almost 10% and

the elongationby nearly50%. There isa correspondingtransitionin fracturemorphology from

theductilecup-and-cone appearance toa more tortuoussurfacewith irregulartearfeatures.The

microstrucmre has probably been severelydegraded by theprecipitationof angularor plate-like

brittleintermctallicphases. Limited durationexposure atprocessingtemperaturesabove 500°C

(932°1) willbe presentedand discussedlaterinanothersection.

Fatiguecrack growth rateswere alsodetermined fortheextrudedFVS0611 and FVS0812

inthe L-T and T-L orientation.These areshown inFig.42.

FracturetoughnessresultsfortheFVS0611 and FVS0812 extrusionsarcpresentedin

Table 8 and Fig.43. These valueshave not been correctedforcurvatureof thecrack front,

which inmost caseswould increasethe statedvaluesby a few percent.In both alloys,the L-T

orientationshows greatertoughnessthanthe T-L orientation;thisdifferenceismore pronounced

inFVS0812. In general,FVS0611 shows greatertoughnessthanFVS0812. This was anticipated

due tothe greatertensileductilityand lower strengthofFVS061 I.In allcasesexceptforT-L

FVS0812 specimens,theplane stressfracturetoughnessKc ismuch greaterthan thecorrespond-

ing ("notvalid")plane strainKq. The T-L FVS0812 specimens showed very britdcfracture

surfaces,with narrow shearlipsoudining flatfeaturelesscenterareas.All otherspecimens

showed wide shearlipsand severelydeformed and tornfracturesurfaces,which accounts forthe

largevaluesof Kc.

Hardness. Hardness is an indicator of tensile strcngth in many alloys. Thc hardness of

the four alloys is plotted in Fig. 44 and it can be observed that the highest volume fraction alloy

had the highest hardncss. It is also evident that rolling at elevated temperatures reduced hardness

as a result of incrcascd dispcrsoid size due to coarsening. Prior work has shown that annealing at

17



elevated temperatures up to 500°C (932°F) has no significant effect of hardness 3". Exposure at

600°C (1112°F) can be expected to reduce h_ess due to significant coarsening of the disper-

soids.
Modulus. The modulus of the alloys were measured using an acoustical resonance

method. _ The data representative of average modulus of the three rolling conditions are pre-

sented in Fig. 45. It can be observed that there is a significant increase in modulus as the volume
fraction of dispersoid is increased from 16 to 27 vol%. It is also apparent thatat 12.6 mpsi (86.9
x 10_MPa), the highest volume fraction alloy (FV$1212) did not have the 14.0 mpsi (96.6x 10s
MPa) modulus previously reported"for a AI-Fe-V alloy with 12 w% Fe. The reason for this
lower stiffness was not known, but it is thought to be related to the initial alloy casting proce-
tiure.

5.4 OTHER CHARACTERISTICS

The stability of the dispersoid is critical to the elevated temperature strength of the alloys.

One method that can be applied to study precipitation and transformations kinetics is based upon

differential scanning calorimetry (DSC). This method measures the relative heat capacity of

samples as a function of temperature. Using DSC at a temperature scan rate of 10°C/win, the

results are shown in Fig. 46. No significant reactions were detected by DSC from room tempera-

ture up to approximately 625°C (1157°F) in all four alloys.

The alloys showed significant electrical conductivity differences. The conductivity of the

alloy sheets is shown in Fig. 47. Clear differences in conductivity existed between alloy disper-

soid volume fraction but not between different rolling conditions.
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6. RESULTS AND DISCUSSION H: SUPERPLASTIC EVALUATION

6.1 SLOW STRAIN RATE(< 2x10 _ s "1)

Deformation behavior at the slow strain rates commonly associated with superplastic

forming was investigated. The elongation achieved at 500 and 600°C (932 and 1112°1) at a

strain rate of lxl04 s "1is presented in Fig. 48. The data show that at low strain rate, although

difference exist in elongation between deformation at 500 or 600°C (932 or 1112°1), all elonga-

tions were approximately under 40%. Alloy FVS0611/500 and FVS812/300 showing the highest

and lowest elongation, respectively. The maximum flow stress achieved during deformation at a

strain rate of lxl0 "4 s"1is shown in Fig. 49. Engineering stress (maximum load / initial cross

section) is shown for later comparison with high swain rate tests. In addition, due to the gener-

ally non-homogeneous deformation behavior of the alloys, a calculated true stress can be subject

to greater errors. The calculated true stress was typically 8% higher than the engineering stress.

For the tests at 500°C (932°I), sheet fabricated at lower rolling temperatures produced the

highest strength and is attributed to the effect of rolling temperature on dispersoid size as shown

previously in Table 4. At 600°C (I 112°1), the strengths are significantly reduced due to the

introduction of thermally activated deformation.

Some evidence of localized superplasticity was observed in some of the tests. This was

evident in the form of fine ligaments observed at the fracture surface. Typical ligaments are

shown in Fig. 50. Ligaments have been observed in other superplaslic materials and are sugges-

tive of deformation according to the core and mantle mechanism, u-" Although the presence of

these ligaments suggest that superplasticity occurs on a very localized level, the overall elonga-

tion data indicate that macroscopic superplasticity does not occur at low strain rates at tempera-

rares up to 600°C (1112°1).

In many alloys, superplasticity can be improved by using a very low strain rate. This

allows diffusional accommodation processes to relieve stresses (mostly at triple points of grains)

arising from grain boundary deformation. Alloy 611/300 was tested at low swain rates of

2.5x10 _ s"_at 500°C (932°1). The results shown in Fig. 51 indicate that at lower strain rates the

flow stress was reduced as expected. However, the elongation was also reduced. The highly

effective pinning of the grain boundaries by the dispersoids does not allow sufficient grain

boundary deformation at low swain rates to increase ductility. Failure at very low strain rates is

likely due to diffusion controlled void formation (cavitation). Additional tests at low strain rates

were not pursued.

To determine the role of dispersoid condition on deformation behavior,

FVS0812/400 was held at 600°C (1112°F) for 15 min prior to testing at 500°C (932°1) at a strain

rate of lxl04 s"1. The 600°C (1112°1) exposure coarsens the dispersoid and alters its interaction

with the matrix. The result is shown in Table 9. Except for a reduction in strength due to the

coarsened dispersoid, as expected, no difference in elongation was observed.

6.2 EFFECT OF INTERNAL STRESS ON SUPERPLASTICITY

The effect of thermally induced internal stress on superplastic deformation was investi-

gated using pre-loaded samples and rapid temperature cycling. The highest volume fraction

alloy with the largest dispersoid size (FVS1212/500) was tested as this condition can be expected
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to have the highest internal stress generation. A segment of the time-temperature record for test

N70 is shown in Fig. 52. It can be seen that the rate of heat-up was substantially faster than that

of cool-down. While a change in temperature from 200 up to 580°C (392 to 1_6°F) required

less than 10 s, the overall time needed for one complete thermal cycle was approximately 400 s

due to the long cool-down period needed. The results of these thermal cycles are presented in

Table I0 and indicatedno benefit_ tempera_ cyclingas elongationwas not improved.

Apparently,thevery smallsizeof thesphericaldispersoidsdid not resultinany significant

internalstressdespitea high dispersoidvolume fraction.Itshould be noted thatin thecomposite

alloysinwhich internalstresssuperplasticityhas been reported,the second phase has been of

significantlygreatersizethanthedispersoidsintheseAI-Fe-V-Si alloys.

6.3 HIGH STRAIN RATE (> 2xlO a s"t)

The dependence of superplastic behavior on fine grain size is well established. As grain

size is reduced, the rate at which superplasticity can take place is increased.

Enhanced Ductility at T >600°C (I I I2°F). The application of a high strain rate resulted

in a significant increase in elongation at 600°C (11 i2°1) .Figures53 and 54 show the effect of

high swain rate (0.1 s "t)on elongation and flow stress at 400, 500, and 600°C, (752, 932, and

1112°1) respectively. At 600°C (1112°1), the data indicate a notable increase in elongation for

all alloy conditions. Alloy FVS0611/500 exhibited the highest elongation gain as compared to
the test data at a s_n rate 0f 1x]O _ s 't'

As temperature approaches 600°C (1112°1), the differences between alloys, such as

volume fraction dispersoid and dispersoid size become less significant _ defo_tion _mes

more matrix diffusion controlled. This can be seen _ Fig. 55, where the flow stress converges

at high temperatures. This is a continuation of the behavior first observed at intermediate tem-

peratures. The effect of deformation temperature on elongation is _uswated in Fig. 56 for alloy

611/500. (The data point at 625°C (1157°1) is from a test at a strain rate of 0.05/s). It shows

that in this strain rate range, temperatures at or above 600°C (1112°1) significantly increase

elongation. At the highest temperat_ tested (625°C (1157°F)), the highest elongation was

achieved. Although high elongation was possible, further tests were not performed because of

significant dispersoids coarsening. In addition, the microstructurai observation indicated the

formation of voids (cavitation) as shown inFig. 57.

At temperatures below 600°C (1112°1), however, strain rate has very little effect on

strength and elongation as shown in Fig. 58 where the maximum flow stress and elongation is

plotted against strain rate at 550°C. At all three strain rates plotted, the flow stress varied by no

more than 0.48 MPa (70 psi). Elongation did not vary significantly, but it did show a better re-

sponse at the middle strain rate value.

Effect of Dispersoid Condition. The effect of dispersoid condition on ductility was in-

vestigated by coarsening the dispersoids prior to test through elevated temperature exposure.

Fig. 59 shows the result of different hold times prior to testing on flow stress and elongation of

FVS0812/500. It is apparent that hold time does not have a significant effect on deformation

behavior. Since time at this temperature would alter the dispersoid morphology, the data signi-

fies that deformation is controlled more by temperature induced (diffusion) effects than by direct

particle dislocation effects.
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Dispersoid Coarsening. The effect of deformation on the microstrucmre in the deformed

samples were investigated by TEM. TEM foils were taken from the gauge section near and far

from the point of failure. The region near the grip represents thermal exposure with less defor-
marion than that near the break. The observation indicated that deformation and plasticity at 500

and 600°C (932 and 1112°F) are primarily acconunodated by the generation and movement of

dislocations within the grains of the alloys. In the lowest volume fraction samples (FVS0301

and FVS0611), the presence of dislocation tangles and interaction of dislocations with the sil-

icide dispersoids are readily apparent, especially at 500°C (932°1:). Representative TEM micro-

graphs of tested specimens are shown in Fig. 60 to 62.

Quantitative analysis to determine the effect of deformation on grain size (Table 11) indi-

cates that after deformation at temperatures above 500°C (932°F), alloys FVS0812 and FVS1212

showed very tittle change in grain size. Alloys FVS0301 and FVS0611 showed a reduction in

grain size. This reduction in grain size may be indicative of partial recrystallization occurring

during deformation and/or the simultaneous recovery of the deformed swacture. Grain size

measured in the deformed samples are very similar to the grain size measured in the initial

sample sheets.

Quantitative analysis to determine the effect of deformation on average silicide disper-

sold size (Table 12), indicated that deformation of the alloys at 600°C (1112°1 :) resulted in more

coarsening of the dispersoid phase in the region nearer the break than in the region away from

the break. Average particle size in the gauge section away from the break was very similar to

the average size measured in the initial sample sheets. The enhanced coarsening of the silicide

phase in the region near the failure point is indicative of localized deformation and strain en-

hanced coarsening. Increased dislocation densities enhance solute diffusion and particle coars-

ening either via a sweeping action of a glissile dislocation moving through a grain or directly by

pipe diffusion.
Deformation of the alloys at 600°C (1112°F) also resulted in the formation of coarse

needle-like Al3Fe particles dispersed in the matrix. The presence of these needles and/or exces-

sively coarse silicide dispersoids are expected to severely degrade the material's mechanical

properties.
Biaxial Forming using High Strain Rate. Equibiaxial gas pressure forming was at-

tempted using the FVS0611/500 alloy in a fixture similar to the f'Lxture used for the DB studies.

The pressure sequence used is shown in Table 13, and was selected to generate an approximate

average strain rate of 0.01 s': when formed into a 0.90 in. (2.29 cm) dome. This was determined

based upon the stress strain behavior measured during uniaxial testing. The cross section of the

resulting dome is shown in Fig. 63. It can be observed that although formed, the thinning was

not as uniform as desired. This reflected the low strain rate sensitivity of the alloy. The alloy

did not show evidence of cavitation under this forming condition.

6.4 ESTIMATED POST PROCESSING PROPERTIES

Effect of Thermal Exposure. The properties of the AI-Fe-V-Si alloys can be retained

only if the microstructure of the alloys can be preserved during thermomechanical processing.

The coarsening of the dispersoids result in degraded properties. This is illustrated in Fig. 64

where the elongation and tensile strength of the alloys are plotted after exposure to 625°C
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(1157°1=) for 1 h, 500°C (932°F) for I h, 500°C (93201 :) for 4 h and with no exposure (as-

received condition). It is evident that the alloys are not degraded _ 500°C (932°1:). Tensile

strength and elongation are essentially that of the U-_eiv_cond]tion. Observation o_e _ta

show a clear trend of ductility and strength loss in the higher volume fraction alloys (FVS0812

and FVS1212) after the 625°C (I 157°F) exposure. The lower volume fraction alloys (FVS0301

and FVS0611) did not show any ductility loss but indicated strength losS.

6.5 SPF ASSESSMENT

Overall, the Al-Fe-V-Si alloys show little or no strain rate sensitivity at swain rates

between lxl04 and 0.10 s "1at temperatures under approximately 550°C (1022°1). The alloys do

exhibit a small strain rate sensitivity increase at swain rates near 0.01 and 0.10 s"1at temperatures

above approximately 600°C (1112°1). This is shown in Fig. 65 where log flow stress is plotted

against log stra_ rate. For the group, the highest _ m value is approximately 0.13. Some

conditions, notably the FVS0611/500 condition, achieved higher elongation. The highest

elongation specimen is shown in the before and after condition in Fig. 66. Based upon

FVS0611/500, an approximate m value can be determined at 500 and 600°C (932 and 1112°F)

using the measured flow stress difference between strain rates of |xl04 and 0.1 s-2. The calcu-

lated m value is 0.09 at 500°C (932°F) and 0.16 at 600°C (1112°F).

The AI-Fe-V-Si alloys showed very little strain hardening at room temperature, 200°C

(392°F), and 300°C (572°F). This same behavior was observed at high temperatures where the

typical load vs time data indicate a very rapid increase to the maximum load followed by gradual

load decrease prior to localized neck formation and failure. The load reduction was amibuted to

diffuse necking. Calculated true stress true swain curve is shown in Fig. 67 for the highest

ductility alloy condition (FVS0611/500). These true stress strain curves assume uniform defor-

mation within the gauge section of the specimen, a situation which is difficult to satisfy for these

alloys given the tendency towards localized neck formation. However, given the current data,

what is evident from Fig. 67 is that the strain level at which "strain softening" (load reduction)

occurs increase as the strain rate is increased. The evidence indicates that strain hardening at

low strain rates, if it occurs, occurs very rapidly in the very early stages of deformation. At high

strain rates and at temperature above 600°C (1112°F), there appears to be some possible en-

hanced plastic stability due to "swain hardening."

Because superplastic behavior can not be considered to take place at strain rate sensitivity

values (m) values less than approximately 0.3, the A1-Fe-V-Si alloys can not be considered

superplastic. However, at temperatures >600°C (1112°F), the increase in m at the higher strain

rates offered some additional plastic stability to the deformation process and elongation was

improved. The significandy higher elongations achieved at temperatures >600°C (i 112°F)

suggest that another deformation mechanism was operative. At these high temperatures, ther-

mally induced dislocation climb through vacancy diffusion is possible, r' At high temperatures

where there is climb, the dispersoid particles are no longer effective at limiting slip through

residual dislocation interaction (i.e., Orowan bowing). As dislocation climb is diffusion rate

driven, there is an associated rate effect and a "strain rate sensitivity" might be encountered

under climb conditions. The observed increase in sw, tin rate sen_tivity might be the result of

such a rate dependence and could have been observed in the "sn'ain" hardening behavior oh-
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served under high strain rates. The combination of high swain rate and deformation resulted in a

large number of dislocations within the matrix and evidence of dynamic recrystallization

evident from the microsmacture.
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7. RESULTS AND DISCUSSION HI : DIFFUSION BONDING

EVALUATION

7.1 SHEAR STRENGTH OF AI-Fe-V-Si ALLOYS

The shear strength of A1-Fe-V-Si alloys in the u-roUed condition (300°C (572°1=)) and

after selected thermal exposures is presented in Table 14. The thermal exposures simulated a

typical diffusion bonding and heat treating cycle employed during the study of dissimilar (AI-Fe-

V-Si/7475) bonds. The thermal exposures included heating at 516°C (961°F) for 4 h followed

by slow cooling, which represents an "as-bonded" or annealed condition, and 516°C (961°F)/4 h

followed by heat treatment to the -'r6" aged condition (482°C (900°F)/1 h, WQ + 121°C

(250°F)/24 h), which is a typical strengthening heat treatment for 7000 series aluminum alloys,

such as 7475. The data show that there was no effect of thermal exposure on shear strength in

alloys containing up to 27 volume percent dispersoids. However, thermal exposure of the FVS

1212 alloy (36 %) caused a loss of shear strength of approximately 24 %.

Effect of Dispersoid Volume Percent and Thermal Exposure on Shear Strength.The

effect of dispersoid volume percent and thermal exposure on the shear strength of high tempera-

ture alloys is shown by Fig. 68. For comparison, the estimated shear strength of these alloys in

the as-rolled condition, based on 60 % of the ultimate tensile strength is also shown. Since there

is no reported shear strength data for these alloys, the estimated values are viewed only as a first

approximation. It can be seen that the actual shear strength of these alloys increases with disper-

soid volume percent, although not in the nearly linear manner as the estimated values. The shear

strengths of the 8 and 16 volume percent alloys agree with the estimated values, while the

strengths for the 27 and 36 % alloys are considerably lower ( 30 and 34 %, respectively) than

those estimated. Also, it can be seen that thermal exposure had no effect on the shear strength of

the 8, 16, and 27 % dispersoid alloys, but did cause a consistent drop in shear strength for the 36

% alloy. This reduction in shear strength might be due to the result of additional precipitation or

coarsening of particles located at prior particle boundaries. Prior particle boundaries inherent

from the powder metallurgy fabrication process are often a significant source of weakness.

The effect of rolling temperature and thermal exposure up to 516°C (96001 :) on shear

strength of sheet FVS0301 and FVS0611 alloys is shown in Fig. 69. In general, the shear

strengths of these two alloys decrease with rolling temperature, as expected, and also show

reasonable agreement with estimated values of shear strength based on 60% of the as-rolled sheet

ultimate strength. These results also indicate that thermal exposure of this type does not degrade

the properties of these alloys. However, beyond 516°C (900°F), high temperature exposure of

the base metal drastically reduces shear strength, as shown in Fig. 70. The data at 600 and

625°C (1112 and 1157°F), (from Table 15) represent shear strength values of high temperature

alloy (similar) diffusion bonds, where failure in many cases occurred in the base metal adjacent

to the bondiine. This strongly suggests that the alloy is no longer stable beyond approximately

516°C (960°F).

Shear Failure Mode in A1-Fe-V-Si Alloys. The fracture surfaces of unbonded, as-rolled

FVS0812 and FVS1212 after shear testing at room temperature are shown by the SEM fractogra-

phs in Fig. 71 and 72. Shear testingof these alloys typically resulted in brittle fracture surfaces
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consisting of relatively flat multiple steps or ledges, which is considered fairly common to

materials made by powder raetall_ _M) technology. The ledges may have been caused by

prior particle boundaries and oxide distributions that can 'mflu_enc¢ frac-ture paths and result in

low shear strengths, as was observed for these materials. Brittle fracture surfaces and low frac-

ture toughness in T-L oriented specimens are typical of many PM alloys. The width of the ledges

vary, but appear to be of the order of the ribbon thickness size (25 lain) of the rapidly solidified

product. Apparent microstructural non-uniformities in the appearance of layers or laminations

were observed in all alloys. The typical appearance of these non-uniformities is represented in

Fig. 73. These striations are the result of the alinement of the comminuted ribbon (powder)

during the alloy consolidation process of extrusion. Additional directionality is achieved during

subsequent roUing. _...... :=

7.2 DIFFUSION BOND BETWEEN AI.Fe-V-Si ALLOYS (SIMILAR BONDS)

Similar Bond Shear Strength. The effect of diffusion bonding pressure and time on the

shear strength of the high temperature sheet alloys is presented in Table 15 and Fig. 74. Diffu-

sion bonding conditions, bonding results and bond shear strength are summarized in Table 15. In

general, these conditions produced three groups of results: diffusion bonded specimens that were

capable of being machined and tested (DB); specimens that were weakly bonded and broke

during machining or subsequent handling (DB/BDM); and specimens for which no bonding was

observed (DNB). Most experiments were conducted on the alloys that had been mUed into sheet

at 500°C (932W), since they represented the most ductile condition for their respective composi-

tions and, thus, the most likely to bond. A limited number of bonding experiments were con-

ducted on alloys rolled at 300°C (572 °F) to verify initial results.

It can be seen from Table 15 that diffusion bonding, which resulted in measurable shear

strengths, occurred only when the bonding temperature was > 600°C (1112°1=). More specifi-

cally, bonding occurred at 600°C (1112°F) when the bonding pressure was 6.90 MPa (1000

psia), and at 625°C (1157°1) when the pressure was 0.7 to 2.8 MPa (100 to 400 psia), as shown

in Fig. 74. The ability to bond at 600°C (1112°F) appears to be directly related to the enhanced

interracial contact that should occur at the highest bonding pressure. The shear strength of bonds

made at 600°C (1112°1 :) are slightly higher. This is attributed to somewhat less dispersoid

coarsening at that temperature. Thus, the results indicate that higher bonding pressure was

beneficial in slightly lowering bonding temperature and increasing resultant shear strengths.

In general, the shear strengths of most of the conditions tested are considered to be low

and range between 69.0-103 MPa (10-15 ksi). In many specimens, shear failure occurred in base

metal adjacent to the bondiine and, thus, these values may be considered a reasonable measure of

the shear strength of the high temperature alloys after short time (up to 4 h) exposure at 600

and 625°C (1112 and 1157°F). The average shear strength for 110043 and 7475-0 (as-DB) alu-

minum also are shown in Fig. 74 for comparison. The results indicate that dispersoid coarsening

during bonding contributes to lower shear strength and that the resultant shear strengths approach

that of the soft, aluminum matrix. The effect of bonding time on shear strength for two selected

conditions is shown in Fig. 75. It can be seen that bonding time has very little affect on strength,

even after short bonding times. Thus, alloy coarsening and softening must occur at high rates at

temperatures > 600°C (1112°F),
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Bond Interface Microsl_ucture. The effect of diffusion bonding pressure on the bond

interface microstructure and shear strength of FVS301/500 after bonding at 600°C (1112°F) for 4

h at 0.7, 2.8 and 6.9 MPa (100, 400, and 1000 psia) is shown in Fig. 76. The specimens bonded

at the two lower pressures were characterized by weak bonds that broke at the shear test region

during the test specimen machining operation. The intact halves of each specimen were utilized

for metallographic examination. A comparison of the bond interfaces shows that the bondline of

each couple is planar but with increasing bonding pressure, the interface becomes less continu-

ous and defined, as is the case for the bond made at 6.90 MPa (1000 psia). Shear failure in

bonds made at pressures < 2.8 MPa (400 psia) occurred along the bond interface, whereas in

bonds made at 6.90 MPa (1000 psia), shear occurred along the interface, or in material adjacent

to the interface, or both. Shear failure in FVS611/500, bonded at 600°C (1112°1 =) for 1.25 h

under 6.90 MPa (1000 psia), in which material adjacent to the bond interface fractured, is shown

in Fig. 77. This indicates that the bond strength was similar to that of the base material.- In

general, bonds with highly discontinuous interfaces and where shear is mixed, are considered to

be of high quality and, thus, desirable.

A comparison of two bonds in FVS3G1/300 and FVS0301/500 material, bonded at

625°C (1157°F) for 4 h under 2.8 MPa (400 psia) is shown in Fig. 78. Close examination reveals

that the bondlines in each are free of porosity and voids and are mainly discontinuous but are

decorated with particles and needles. The AI3Fc needles are mainly oriented parallel to the

bondline or normal to the applied bonding pressure. A silicide depleted zone is visible around

each needle. The average bond shear strength of each specimen was approximately the same, al-

though, before diffusion bonding, the FVS301/300 sheet was about 35% stronger. These results

indicate that bonding under these conditions leads to extensive particle coarsening and drastic

loss in strength.

The effect of bonding time and temperature on the bond interface and strength of

FVS611/500 is shown by light micrographs in Fig. 79 and 80. The effect of time on bonding at

625°C (I 157°F) at 2.8 MPa (400 psia) for 1,2, and 4 h is shown in Fig. 79. In addition to disper-

sold particle coarsening in each condition, it can be seen that bonding at 4 h led to a less distinct
and more discontinuous interface than the shorter times. The less distinct interface did not lead to

higher shear strength but it did result in a more consistent bond quality, as indicated in Table 15.

For example, the 1 h bond condition exhibited considerable failures during sample machining

and handling so that only one shear test was actually conducted for that condition. The beneficial

effect of temperature on bonding FVS611 is shown in Fig. 80. A bond made at 516°C (960°F)

and 2.8 MPa (400 psia) easily broke during subsequent handling; its bondline is well defined and

continuous. The 625°C (1157°F)/0.7 MPa (100 psia) bond exhibits a more desirable interface

which indicates that higher temperatures lower yield strength, and help to achieve good surface

contact that is required for bonding. Coarsening in the 625°C (1157°F) bond lead to the rela-

tively low shear strength that is common in these materials after overheating.

The interfaces of bonds made in FVS0812 and FVS 1212 after bonding at 600°C (1112°I:)

for 4 h under 6.9 MPa (1000 psia) are shown in Fig. 81. Under these conditions, the higher

strength alloys also exhibit discontinuous bondlines and extensive coarsening. Distinct AI_Fe

needles oriented in a direction normal to the applied bonding pressure may be observed.The

fracture surface of an FVS812 shear specimen is seen to be adjacent to the barely discernible
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interface,that indicates that the shear strength of the bond was comparable to that of the base

metal. The higher volume fraction alloys (FVS0812 and FVS1212) arc more difficult to bond be-

cause of their inherent higher creep resistance. This makes the initial stage of bonding, that of

surface contact, very difficult using low pressures. The use of high pressures, such as 6.90 MPa

(1000 psi) is not practical and the use of higher temperatures (>>600°C(1112°F)) would only

increase the di_id coarsening problem.

TEM micrographs of FVS812, shown in Fig. 82 after bonding at 600°C (1112°F) for 4 h

under 6.90 MPa (1000 psia), indicate that these bonding conditions promote significant coarsen-

ing of the silicide phase and copious formation of needle-like AlrFe and possibly AI3V intermet-

allic particles. In general, the diffusion bond was very difficult to discern by TEM because only

an apparently fine oxide layer was present at the interface and clustering of the silicide particles

along the interface had not occtmed. These results indicate that the conditions required to DB

these alloys and the resultant evolution in microstructure are expected to-severely degrade the

material's mechanical properties following bonding.

Bond Fracture Appearance. The shear fracture surfaces of FVS301/300 bonds and

FVS0301/500 bonds, bonded at 625°C (1157°/:) for4 h is shown by the SEM fractographs

shown in Fig. 83. Although bonded at different pressures, the fracture surfaces are quite similar.

They are mainly characterized by relatively featureless islands approximately 10 IJ.m wide with

evidence of coarsened dispersoids or AI3Fe needles. Also, the islands of each surface have small,

elongated, ductile tear ridges characteristic of shear. The average shear strength for each was

virtually the same.

7.3 DIFFUSION BOND BETWEEN AI-Fe-V.SI ALLOY AND 7475 (DISSIMILAR

DIFFUSION COUPLES)

The difficulty encountered during high temperature DB of AI-Fe-V-Si alloys to itself is

dispersoid coarsening which results in properties degradation. If the'properties can not be

retained, then DB is an unlikely joining technique for strength critical applications. To retain full

strength in the AI-Fe-V-Si alloys, the bondingtemperature used mustnot result _ microstructu-
ral coarsening. This can be done if bonding can be done at low temperatures. Dissimilar

bonding offers such a possibility as what is considered high for one alloy might not be consid-

ered high for another. A dissimilar alloy which can bond to the AI-Fe-V-Si alloys might offer a

novel opportunity to produce hybrid structures.

Dissimilar Bond Shear Strength. The shear strength_ of dissimilar bon_ between high

temperature alloys rolled at 300°C (572°F) and 7475 aluminumalloyare su_zed in Table

16. Diffusion bonds were PrOduced with fine-grained, superplastic 7475 A1 for times from 1-22

h, under 0.7 MPa (100 psia) at 5160C (960°F), which is _e optimum su_iastiC::_mperature

for 7475. Diffusion bonds also were made for each of the alloys for 4 h _d subsequently heat

treated to the T6 condition. The results show that relatively high strength bonds were produced

for all conditions and for times as short as 1 h. For example, after ! h the shear su'ength of the

F"VS 812 dissimilar couple is approximately 75 % that of the as-received base metal.

The effect of diffusion bonding time on as-bonded shear strength is shown in Fig. 84.

The average shear strength of as-bonded 7475/7475 aluminum alloy also is shown for

comparison.The results indicate that _nd shear strength is time dependent and that bond
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strengths comparable to that of as-bonded 7475/7475 couples were attained after relatively short

times for the FVS812 (27%) and FVS1212 (36%) alloys. After long time bonding at 22 h, the

shear strength of all dissimilar bonds converged at the same level of 117-124 MPa (17-18 ksi),

the 8% and 16% alloys having steadily increased to that level, while the 27% and 36% alloys

declined from their previous highs. These changes in shear strength with time are attributed, in

part, to diffusion across the interface during bonding.

The systematic effect of dispersoid content and time on the shear strength of dissimilar

bonds also is shown in Fig. 85. It is clear that the FVS812 (27%) alloy consistently exhibited the

highest shear strengths for times up to 4 h and, most impressively, also for the shortest times.

Longer bonding times @pear to enhance bond strength in the 8% and 16% alloys and degrade

strength in the other alloys. After 22 h, the shear strenThs of the FVS0301 and FVS0611 dis-

similar bonds were about 90 and 65% of their respective base metals.

The effect of a post-bond heat treatment to the "1"6strengthening condition on the shear

strength of dissimilar bonds is shown in Fig. 86. The shear strength of the unbonded high tem-

perature base metal also is shown for comparison. It can be seen that heat treatment to the T6

condition results in sizeable gains in shear strength in alloys up to 27% dispersoids and results in

no change in the 36% alloy. For example, the shear strength of the FVS0812 alloy increases

about 22% from the as-bonded condition to approximately 172 MPa (25 ksi) after diffusion

bonding at 516°C (960°F)/0.7 MPa (100 psia)/2 h and heat treating. This is equivalent to ap-

proximately 90% base metal shear strength. In comparison, the same heat treatment given to a

7475/7475 couple, diffusion bonded in a similar manner, would result in a strengths of approxi-

mately 317MPa (46 ksi), a gain of about 110%. A comparison of the dissimilar bond strength in

the as-DB and as-Db+T6 with the base alloy strength shows an almost parallel relationship. Of

significance is the nearly consistent drop in shear strength for the FVS1212 (36%) alloy. In

general, these results indicate that high shear strengths in dissimilar bonds may be limited by

base metal shear strength and compositional gradients at the bond interface.

Dissimilar Bond Interface Microstructure. The interface microstructure between each

of the high temperature alloys and 7475 aluminum alloy after diffusion bonding at 516°C

(960°1=) at 0.7 MPa (100 psia) for the times indicated are shown in Fig. 87 and 88. In each case,

the bondline is planar and is free of porosity or other voids. Coarsening adjacent to the interface

is apparent in the FVS alloys after a bonding time of 22 h. These visual microst_mctural changes

may also be the result of interdiffusion which is known to have occurred extensively on both

sides of the couples. Also, it can be seen that a diffusion zone exists in the 7475 alloy of each

dissimilar couple at both bonding times.

The bondline does not appear to be continuous in the FVS0301 alloy, but it seems to be

in the other alloys. This is most likely due to the higher volume percentages of dispersoids in

those alloys. The discontinuous interface of the FVS0301 dissimilar couple bonded for 4 h

indicates that a relatively strong bond was formed in that particular specimen. In fact, even

though the average shear strength of FVS0301/4 h bonds was low because of scatter (79 Y.34

MPa (11.5:!=5 ksi)), the maximum strength of the specimen shown (112 MPa (16.3 ksi)) was

comparable to that of FVS0301/22 h bonds (122.+.3 MPa (17.7:L-0.5 ksi)) and shear fracture

occtmed in the FVS0301 material, away from the bond. Thus, the appearance of the bond inter-

face can serve as a guide to bond quality.
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TEM micrographsof dissimilarbondsbetweenFVS0812and7475aluminumalloy in the
as-bondedand heat treated condition (T6) after bonding at 516°C (960°F) for 2 h at 0.7 MPa

(100 psia) are shown in Fig. 89 and 90, respectively. TEM of areas directly adjacent to the
interface, in both conditions, indicate that a significant amount of interdiffusion has occurred due

to interdiffusion between the dissimilar metals. Diffusion bonding was performed without the

coarsening or transformation of the AI,(Fe,V)3Si silicide phase,

The effect of bonding time on interface diffusion between FVS0812 and 7475 aluminum

alloy after bonding at 516°C (960°1) at 0.7 MPa (100 psia) is shown by the light micrographs in

Fig. 91. Even after I h, the visible diffusion zone in the 7475 alloy is about 50 mm (1.97 in.)

indicating that intimate surface contact and bonding was attained. The extent of interdiffusion

across the interface of dissimilar couples was determined by performing energy dispersive

spectroscopic (EDS) analysis on bonds between FVS0812 and 7475 aluminum alloy after bond-

ing at 516°C (960°F) and 0.7 MPa (100 psia) for 1, 4, and 22 h, as shown in Fig. 92. The concen-

tration profiles of the major alloying elements were determined at approximately 20-30 micron

increments across the interface. In addition, wave length dispersive spectroscopy (WLDS) was

performed on the same dissimilar couple after a 2 h bonding cycle, in increments of one micron

across the interface, as shown in Fig. 93. In general, the analytical results are in reasonable

agreement and show that interdiffusion of Za, Cu,and Mg is extensive even after 1-2 h For

example, after 1 h, Cu and Zn (Fig. 92) have diffused approximately 200 I_a across the interface

into the FVSOS12 alloy. Bonding at longer times resulted in extended diffusion zones at least 300

IJ.mwide. The slope of the diffusion profiles for Fe and V are steep indicating limited diffusion.

After 22 h, Si diffusion into 7475 AI is relatively sizeable. The presence of Cu, Zn, and Mg in

the FVS0812 matrix is assumed to be deleterious since the phases that form ate unstable at high

temperatures. Furthermore, the reduction of Cu, Zn, and Mg in 7475 AI adjacent to the interface

will result in localized weakening of the 7475, especially after strengthening heat treatments.

The influence of interdiffusion on the mechanical properties of dissimilar bonds is illus-

trated by the effect of bonding time and heat treatment on microhardness across the interface of

bonds after bonding at 516°C (96001 =) at 0.7 MPa (100 psia), as shown in Fig. 94 and 95. The

effect of I and 22 h bonding times on the hardness profile of as-bonded specimens between

FVS0812 and 7475 aluminum alloy is shown in Fig. 94. After 1 h, a hardness gradient in the

FVS0812 extends approximately 125 i.tm from the interface and, after 22 h, it is approximately

300 mm from the interface. The hardness of the 7475 AI is relatively unchanged, but there is a

slight increase near the interface after 22 h, that may be attributed to diffusion. The effect of

post-bond heat treatment to the T6 condition on the hardness of dissimilar bonds between
FVS0812/7475 and FVS1212/7475 after bonding at 516°C (960°F) for 2 h at 0.7 MPa (100 psia)

is shown in Fig. 95. It can be seen that a hardness gradient exists on the 7475 aluminum side of

both couples and extends approximately 125 Izm from the interface and that the hardness of the

7457 near the interface is comparable to the as-bonded condition, shown in Fig. 94. Both AI-Fe-

V-Si alloys exhibit smaller than expected hardness gradients away from the interface. It is pos-

sible that diffusion of Cu, Zn_ and Mg into the A1-Fe-V-Si alloys, followed by the T6 heat treat-

menL had a strengtheningeffect.

DissimilarBond Fracture Appearance. Fractographsof sheartestspecimens represent-

ing dissimilardiffusionbonds areshown inFig.96 to98. Typicalresultsforas-bonded
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FVS0301/'7475 and FVS0611/'7475 couples after bonding at 516°C (960°F) for 22 h under 0.7

MPa (100 psia) are shown in Fig. 96. In the 22 h bonds, fracture occurred through the AI-Fe-V-

Si alloys, adjacent to the interface. The fracture surface of each alloy was characterized by small,

elongated dimples. In the 1 and 2 h bonds, fracture occurred along the bondline; the fracture

surface appeared flatter and had far fewer ductile appearing dimples. The 4 h bonds were charac-

terized by a mixture of shear failures either along the bondline or through the AI-Fe-V-Si alloys.

Fracture specimens of FVS0812/7475 after bonding at 516°C (96001 :) under 0.7 MPa

(100 psia) for 2 and 22 h are shown in Fig. 97. In each, fracture occurred in the AI-Fe-V-Si alloy

away from the bond interface, which was typical for all 22 h bonds. In the 1, 2, and 4 h bonds

with FVS0812/7475, the fracture path was mixed between bondline and AI-Fe-V-Si alloy

failure.Thus, since there was only small scatter in shear strength values, the mixed fracture paths

indicate that the shear strength at the bondline or in material away from the interface were ap-

proximately comparable. Typical fracture surfaces for both 2 and 22 h bonds are shown in Fig.

98. For each, elongated dimples with ductile tear ridges were observed. In general, the appear-

°ance of fracture surfaces of FVS1212/7475 couples were similar to those of the FVS0812/7475

series.

7.4 DB ASSESSMENT

DB of A1-Fe-V-Si alloys. The results of this work suggest that diffusion bonding of the

rapidly solidified AI-Fe-V-Si alloys can be achieved at temperature and pressure combinations

with virtually no macro deformation. Bond shear strengths achieved were approximately that of

the matrix material. However, due to the instability of the dispersoid at the temperature needed

for diffusion bonding, significant dispersoid coarsening and transformation occurred and the

matrix mechanical properties were significantly w_duced. Similar to the results obtained in the

deformation work, exposure to temperatures above 500°C (932°F) caused rapid coarsening of the

dispersoids and the formation of large needle-like AI3Fe particles. Once significantly coarsened,

the dispersoids no longer offered strengthening and the shear strength of the diffusion bonds was

mainly determined by the matrix strength which was 69-103 MPa (10-15 ksi). Higher DB gas

pressures reduced the temperature required for bonding, but no bonds were achieved at tempera-

tures below 600°C (1112°F) at pressures up to 6.9 MPa (1000 psi), in any of the AI-Fe-V-Si

alloys. Using gas pressures bonding at relatively low pressures, it appears that the A1-Fe-V-Si

alloys require a homologous temperature greater than 0.95 for bonding, which is similar to 7475

AI alloy. The dispersoids are thermally stable up to a homologous temperature of approximately

0.76 or approximately 500°C (932°F). The effect of higher DB temperatures was not further

investigated because of the extensive coarsening already observed at 600°C (1112°F).

Consideration of the diffusion bonding process suggests that high temperatures are

beneficial for two reasons. First, diffusion rate is highly controlled by temperature, so that the

time needed for bonding is clearly decreased with increasing temperature. Second, and perhaps

more important, the yield stress needed to deform surface asperities during the first stage of

bonding is significantly reduced. For the creep resistant AI-Fe-V-Si alloys, very high tempera-

tures are required to reduce the "flow" stress to a level that is compatible with conventional gas

pressure diffusion bonding. At these temperatures, the accompanying coarsening of strengthen-

ing dispersoids and resultant losses in the properties are unfortunate by-products. However, the
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decreaseinyieldstressof theAI-Fe-V-Si alloysattemperaturesabove 600°C (I112°F) isnot

mainly due todispersoidcoarseningbut ratherto theavailabilityof anotherdeformationmecha-

nism based upon diffusion controlled dislocation climb. Thus, if the strengthening dispersoids

remained stable at high enough temperatures to reduce the flow stress to that compatible with gas

pressure bonding, it is quite possible that surface deformation and matrix bonding could occur

without significant degradation in room temperature properties. The inherent fine grain micros-

tructure would enhance the bonding process by allowing oxide disruption through extensive
localized surface deformation. Furthermore, in extremely fine-grained material, new dislocations

can be continually supplied to support deformation since powntial _slocation sources are avail-

able at grain boundaries, ss Source and sink mobility at boundaries may dictate the behavior of

fine-grained superplastic alloys, s0Thus, it may be possible that dispersion strengthened alloys

can be bonded without significant strength loss if the dispersoids remain stable.

Effect o/Small Grain Size. The experimental evidence suggests that the fine grain size

of the A1-Fe-V-Si alloys enhances diffusion bonding. This effect was evident by comparing

bonding data for dissimilar couples, as shown in Fig. 99. It can be seen that alloys with smaller

grain sizes achieve maximum strength faster than those with larger grain sizes. It is significant

that this effect was operative at 516°C (960°F), representing a homologous temperature of

approximately 0.78 for the AI-Fe-V-$i alloys and 0.95 for the 7475 alloy. At increased bonding

time, such as 22 h, measurements of compositional gradients across the bond interface suggest

that bond strength can be reduced by the interdiffusion of elements between the dissimilar alloys.

The better bonding ability of the smaller grain size alloys can be attributed to the easier localized

deformation of the fine grain surface, which offers a mechanism for the fragmentation of the thin

inherent surface oxide layer and thus enabling diffusion bonding to occur at a faster rate.

Diffusion Bonding of Dissimilar Alloys. The work on diffusion bonding of fine-grained

7475 aluminum alloy to A1-Fe-V-Si alloys indicates that viable joints can be made at tempera-

tures without significant dispersoid coarsening. This is particularly encouraging since the bond-

ing of the AI-Fe-V-Si alloys to itself was only possible at temperatures that caused detrimental

dispersoidcoarseningand lossof strength.The shearstrengthof dissimilarbonds was limitedby

base metal shearstrengthand compositionalgradientsatthebond interface.This isindicatedby

a comparison of normalized shearstrengths(i.e.,theratioof bond strengthtothatof hasc metal)

fordissimilarAI-Fe-V-Si alloybonds intheT6 conditionand similarAI-Fe-V-Si alloybonds,as

shown inFig.I00.Itcan be seen thatdissimilarbonds with strengthsup to90% thatof the AI-

Fe-V-Si alloybase metal were attained,which arehigh compared with the low strengthsof the

similarAI-Fe-V-Si alloybonds.Fullstrengthprobably was not achieved due to intcrdiffusionof

alloyingelements between the7475 and AI-Fe-V-Si alloys,sincemany shearsamples showed

failureaway from thebond line.In general theresultsof thisWork indicatethatthe fabrication

of hybriddissimilaralloysmacturcsbased upon the enhanced bonding behavior of theseimpor-

tam materialsispossible.
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8. CONCLUSIONS

Superplastic deformation of the AI-Fe-V-Si alloys was not possible due to effective

pinning of grain boundaries by dispersoids. However, enhanced ductility (up to 300% elonga-
tion for FVS0611/500) can be achieved at temperatures above 600°C (I 112°1) using strain rates

typically between 0.1 and 1 s"_. This enhanced ductility is likely the result of an increase in

strain rate sensitivity at high temperatures where the limiting deformation mechanism changes

from dislocation glide to thermally (diffusion) controlled dislocation climb. The deformed mi-
crosu'ucture under these conditions indicated substantial dislocation generation and some dy-

namic recrystallization. At temperatures above 600°C (1112°F), rapid coarsening of the disper-

soids and their transformation to primary AI3Fe resulted in significant degradation of mechanical

properties. Furthermore, the coarsening was amplified by strain during the deformation process.

At tem_ratures below 500°C (932°1), swain-enhanced coarsening was also observed to a lesser

degree. Non-swain induced coarsening was significantly less at 500°C (932°F) as compared to

600°C (1112°F).

Diffusion bonding of the AI-Fe-V-Si alloys was possible at temperatures at or above

600°C (1112°F). Although the bond strength approached that of the matrix, significant reduction

in the alloy strength occurred due to extensive dispersoid coarsening and transformation at or

above 600°C (1112°F). Dissimilar diffusion bonds between the AI-Fe-V-Si alloys and f'me-

grained, superplastic 7475 aluminum alloy were produced at 516°C (960°F) for short times and

low pressures without harmful dispersoid coarsening. Dissimilar bonds with shear strengths up to

90% that of the A1-Fe-V-Si base metals were attained. The excellent dissimilar bonds were

limited by lower than expected base metal shear strength and compositional gradients due to

interfacial diffusion. It was also apparent that the fine grain size of the AI-Fe-V-Si alloys en-

hanced diffusion bonding by reducing bonding time and pressure.
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Table 1. Chemical Composition of Experimental AI-Fe-V-Si Alloys

m.,=,..

Alloy

FVS0301

FVS0611

FVS0812

FVS1212

Vol. %

(silicides)
8

16

27

36

Composition (weight %)

Fe V Si AI

nominal 2.78 0.25 0.54 bal.

actual 3.04 0.23 0.63 bal.

nominal 5.47 0.49 1.06 bal.

actual 5.77 0.46 1.16 bal.

nominal 8.5 1.3 1.7bal.

actual 8.83 1.22 1.76 bal.

nominal 11.7 1.15 2.4bal.

actual 12.7 1.06 3.12 bal.
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Table2. AlloySheetQuantityProduced

Alloy

FVS0301
Ext@385°C
(725°F)

FVS0611
Ext@385°C
(725°F)

FVS0812
Ext@385°C
(725°F)

FVS1212
Ext@427°C
(800°F)

Compact RollTemp TotalSheet
°C (°F) ITF(in.=)

C395 300 (572) .22 (340)

C394 400 (752) .22 (340)

C396 500 (932) .22 (340)

C379 300 (572) .26 (400)

C377 400 (752) .22 (340)

C378 500 (932) .12 (180)

C381 300 (572) .26 (400)

C383 400 (752) .26 (400)

C384 500 (932) .25 (380)

C400 300 (572) .18 (280)

C399 400 (752) .25 (380)

C398 500 (932) .26 (400)

( Sheet thickness approximately = 2.0 mm, typical width= 10.2 cm)
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Table 3. Alloy Average Grain Size

m

Alloy

FVS0301

FVS0301/300

FVS0301/400

FVS0301/500

Extrusion

(_m)

Sheet

(l_m)
as-extruded 1.25

1.23

1.19

1.08

FVS0611 as-extruded

FVS0611/300

FVS0611/400

FVS0611/500

FVS0812 as-extruded

0.87

0.42

0.78

0.87

1.19

FVS0812/300

FVS0812/400

FVS0812/500

FVS1212 as-extruded

FVS 1212/300

FVS121 2/400

FVS1212/500

0.29

0.33

0.41

0.44

0.30

0.32

0.32

w

r

39



m

N

Table 4. Average Dispersoid Particle Size

Alloy

FVS0301

FVS0301/300

FVS0301/400

FVS0301/500

FVS0611

FVS0611/'300

FVS0611/400

FVS0611/500

FVS0812

FVS0812/300

FVS0812/400

FVS0812/500

FVS1212

FVS 1212/300

FVS1212/400

FVS 1212/500

as-extruded

as-extruded

as-extruded

as-extruded

Extrusion Sheet

(nm) ,,(nm)
3O

4O

65

138

27

58

40

96

25

53

31

43

47

33

83

76
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Table 5.

Alloy

FVS0301

FVS0611

FVS0812

FVS1212

Average Longitudinal Tensile Strength of Extruded Alloys

Temp. 0.2 Yield UTS Elong.

°C (°F) MPa (ksi) MPa (ksi) %
|=

Area Reduction

%

R.T. 167 (24.2) 217 (217) 26.8

149 (300) 143 (20.8) 165 (23.9) 23.9

232 (450) 125 (18.1) 134 (19.4) 23.1

316 (600) 106 (15.3) 107 (15.5) 24.4

R.T. 258 (37.4) 311 (45.1) 22.3

149 (300) 222 (32.2) 248 (36.0) 13.5

232 (450) 192 (27.9) 206 (29.8) 17.3

316 (600) 160 (23.2) 163 (23.7) 16.8

R.T. 391 (56.7) 444 (64.4) 17.1

149 (300) 337 (48.9) 369 (53.5) 8.9

232 (450) 293 (42.5) 310 (45.0) 11.3

316 (600) 231 (33.5) 238 (34.5) 11.8

R.T. 514 (74.5) 553 (80.2) 9.4

149 (300) 437 (63.3) 457 (66.3) 5.8

232 (450) 373 (54.1) 390 (56.6) 6.9

316 (600) 272 (39.5) 290 (42,1) 8.5

85

80

80

77

71

52

52

50

55

37

37

39

23

21

22

15

v
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Table6. AverageLongitudinalTensileStrengthof RolledSheet

Alloy

FVS0301/300

FVS0301/400

FVS0301/500

FVS0611/300

FVS0611/400

FVS0611/500

FVS0812/300

FVS0812/400

FVS081 2/500

FVS1212/300

FVS1212/400

FVS1212/500

Strength

0.2 Yield UTS Elong.

MPa (ksi) MPa (ksi) %

172 (25.0) 203 (29.5) 19.1

133 (19.3) 180 (26.1) 27.0

104 (15.1) 148 (21.5) 30.7

298 (41.9) 317 (45.9) 17.6

212 (30.7) 248 (36.0) 9.5

116 (16.8) 181 (26.2) 27.7

430 (62.4) 454 (65.8) 13.3

392 (56.8) 416 (60.3) 17.4

271 (39.3) 342 (49.6) 18.0

500 (72.5) 530 (76.9) 9.4

482 (69.9) 503 (73.0) 12.1

413 (59.9) 448 (65.0) 13.3

m
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Table 7. Average Longitudinal Tensile Strength of Extruded Alloys After Thermal Exposure

Alloy

FVS0301

FVS0611

FVS0812

FVS1212

FVS0812

FVS0812

FVS0812

I

Exposure

°(3 (°F)/hr

399 (750)/120

399 (750)/120

399 (750)/120

399 (750)/120

399 (750)/504

454 (850)/120

510 (950)/120

0.2 Yield UTS Elong. R.A.

MPa (ksi) MPa (ksi) % %

159 (23.1) 207 (30.0) 27.2 85

254 (36.9) 306 (44.4) 24.0 70

394 (57.1) 450 (65.3) 17.7 55

519 (75.2) 554 (80.4) 6.8 18

397 (57.5) 446 (64.6) 17.8 57

390 (56.5) 446 (64.6) 15.7 51

358 (51.9) 414 (60.0) 9.9 25
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Table 8. Average Room Temperature Fracture Toughness Based Upon Extruded Alloys

L_....

Alloy

FVS0611

FVS0812

Orientation Kq Kc

MPa,/m (ksi,Jin) MPa_/m (ksNin)

L-T 23.5 (21.4) 100 (91.0)

T-L 19.1 (17.4) 58.6 (53.3)

L-T 28.8 (26.2) 87.2 (79.3)

T-L 14.1 (12.8) 15.5 (14.1)

..---..

...---.

Table 9. Effect of Dispersoid Coarsening on Deformation at 500°C (932°F)

Sample FVS0812/400

Strain rate=1x10 .4s", test temperature= 500°C(932°FI
Hold Time

at 600°C

11112°F)

No hold

Hold 15 min.

Max. Eng. Max. True Elongation
Stress Stress

MPa lksi) MPa (ksiI %

64 (9.28) 71 (10.3) 26

56 (8.12) 61 (8.64) 26

Table 10. Internal Stress Superplasticity Test

FVS1212/500 at a constant stress of 8.62 MPa (1250 psi)

Test

ID

N68

N70

N69

T,,= T,,_ Duration Results

°C (°F) °C (°F) min.

520 (968) 200 (392) 1860

580 (1076) 200 (392) 1200

620 (1148) 200 (392) 55

Test stopped- no elongation measured

Test stopped- no elongation measured

Sample failed at 65% elongation
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Table 11. Grain Size After High Temperature Deformation 111

Alloy

CondiUon

FVS0611/500

Defor. Strain Approx. Grain Size

Temp. Rate Elong. Sheet "Grip

°C (°F) s" % pm pm

*Break

Izm

FVS0301/500

FVS0611/500

FVS0812/500

FVS0812./300

FVS1212/300

FVS1212/500

600 (1112) 0.01 200 1.19 1.30 0.73

500 (932) 0.1 40 1.08 1.05 0.86

500 (932) 0.1 45 1.19 1.50 0.75

500 (932) 0.1 38 0.44 0.40 0.39

* final size in gage

600 (1112) 2.2 87 0.33 0.23 0.25

600 (1112) 2.2 150 0.30 0.26 0.32

600 (1112) 2.2 140 0.32 0.26 0.26

section near grip or break

m

m

g

m

i

L_Table 12. Dispersoid Size After High Temperature Deformation

Alloy
OonditJon

FVS0611/500

FVS0301/500

FVS0611/500

FVS0812/500

FVS0812/300

FVS1212J300

FVS1212/500

Defor. Strain Approx. Dispersoid Size

Temp. Rate Elong. Sheet *Grip *Break

=C (°F) s"t % nm nm nm

600 (1112) 0.01 200 96 110 210

500 (932) 0.1 40 138 110 160

500 (932) 0.1 45 96 155 200

500 (932) 0.1 38 43 40 75

600 (1112) 2.2 87 53 47 60

600 (1112) 2.2 150 33 100 100

600 (1112) 2.2 140 76 90 160

* final size in gage section near grip or break
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Table 13. Pressure Sequence for Equibiaxial Forming of FVS0611/500 Alloy

Dome radius=1.14 cm (0.45 in.)

Sheet thickness= 2 mm (.080 in.), at 600°C (1112°F)

_me, s Pressure, MPa (psi)

o o(o)
12 .28 (40)

60 .69 (100)

1200 .69 (100)

Table 14. Effect of Thermal Exposure on Shear Strength of Alloys

Voi %

Dispersoid
8
8
8
16
16
16
27
36

Rolling
Temp, °C (°F)

300 (572)
400 (752)
500 (932)
300 (572)
400 (752)
500 (932)
300 (572)
300 (572)

Shear Strength, MPa (ksi)
As-Rolled 516°C (960°F)/4 h

142+7(20.6:1:1 )

181.3+7(26.3+1 )

w

193.1:1:3(28:1:0.5)
213+7(30.9:1:1 )

132.4+(19.2:1:2)
120:1:7(17.4±1)

118.6+3(17.2+0.5)
175.8:1:3(25.5:L-0.5)
151:f.3 (21.9:L-0.5)
111+3(16.1:L-0.5)
186.9+7(27.1+1)

162.7:121 (23.6+3)

(1) 482°C (900°F)/1 h, WQ + 121°C (250°F)/24 h

516°C (960°F)/4 h. T6 (1)

184+7(26.7+1 )

w

180.6-1-3(26.2+0.5)
160+7(23.2:1:1)
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Table 15. Effe= of Tempera_re and Pressure on Shear Strength of Diffusion Bonds
z
m

m°C/MPaJh

(°F/psi_h)

516/0.7/4

(960/100/4)

51_0.7/16

960/100/16)
55_0.7/4

(lO_/lOO/4)
550/0.7/16

1022/100/16)

600/0.7/4

(11i2/100/4)

62_0.7_

(1157/100/2)

Vol % Compa_ Bonding
ii i=1

DB Shear Strength,

Dispersoid Alloy (1) No. Results (2) MPa (k.d)

8 301 396 DNB
16 611 378 DNB
27 812 384 DNB

_ 1212 ,3_ _)N_
8 301 396 DNB

8 301 396 DNB

8 301 396 DNB

8 301 396 DBJBDM
16 611 378 DB/BDM
27 812 384 DNB

36 1212 398 DNB
8 301 395(3) D_BDM
16 611 379(3) DB/BDM
27 812 381 (3) DNB

36 1212 400(3) DNB

62_0.7/4

(1157/100/4)

8 301 396 DB (two BDM)
8 301 395(3) DB (two BDM)
16 611 378 DB

16 611 379(3) DB_BDM
27 812 384 DNB

27 812 381 (3) DB/BDM

66.2¢14(9.6_2)
55.2(8) (4)
75.8±1 (11 + 0.2)

36 1212 398 DNB

36 1212 400(3) DNB
8 301 396 DNB

516_2. _4 16 611 378 DB/B DM

(960/400/4) 27 812 384 DNB
36 1212 398 DNB
8 301 396 DB/BDM

600/2._4 16 611 378 DB/BDM

(1112J400/4) 27 812 384 DNB
36 1212 398 D_BDM

m

i

m
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w

m
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Table 15. (continued)

°C/MPa/h Vol % Compact Bonding

(°F/psla/h) Dispersoid Alloy (1) No. Results (2)

DB Shear Strength,

MPa (ksi)

625/2.8/1

(1157/400/1 )

16 611 378 DB (8 BDM) 81.4(11.8) (4)

16 611 378 DB (7 BDM) 83.4-1-7(12.7:1:1)625/2.8/2

(1157/400/2)

625/2.8/4

1157/400/4)

8
8
16

16
27

27
36
36

301 396 DB

301 395(3) DB
611 378 DB

611 379(3) DB (4 BDM)
812 384 DB/BDM

812 381(3) DB/BDM
1212 398 DB/BDM

1212 400(3) DB/BDM
301 396 DB/BDM
611 378 DB/BDM
812 384 DB/BDM
1212 398 DNB

516/7/4

(9601100014)

8

16
27
36

78.6+3(11.4 + 0.5)
73.8±7(10.7:1:1 )
77.9±7(11.3 + 1.0)

89.6+3(13±0.5)

550/714

(1022/1000/4)

8 301 396 DB/BDM
16 611 378 DNB
27 812 384 DNB
36 1212 398 DNB

8 301 396 DB600/7/1.3 16 611 378 DB

1(1112/1000/1.3) 27 812 384 DB/BDM
36 1212 398 DNB

82.7¢7(12:1:1 )
89.6+7(13¢1 )

600/714 -

(I112/I000/4)

8 301 396 DB
16 611 378 DB/BDM
27 812 384 DB

36 1212 398 DB

104.8±10(15.2+1.5)
m

80.7+4(11.7i-0.6)
100.7:1::19(14.6:1:2.7)

Notes: (1) Rolling Temp.=500°C (932°F), except as noted
(2) DB=bonded, DNB=did not bond, BDM=broke during machining or handling
(3) Rolling Temp = 300°C (572°F)
(4) one test only
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Fig. 1 Structure of Siliclde Dispersoid
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Fig. 2 TEM Mlcrograph of FVS0301 Alloy Extrusion
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Fig. 3 TEM Mlcrograph of FVS1212 Alloy Extrusion
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Fig. 4 Optical Mlcrographs of FVS0301/300 Sheet
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Fig. 5 Optical Mlcrographs of FVS0301/400 Sheet
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Fig. 10 Optical Micrographs of FVS0812/300 Sheet
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Fig. 11 Optical Mlcrographs of FVS0812/400 Sheet
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Fig. 13 Optical Mlcrographs of FVS1212/300 Sheet
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Fig. 15 Optical Micrographs of FVS1212/500 Sheet
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Fig. 16 TEM Micrographs of FVS0301/300 Sheet
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Fig. 18 TEM Micrographs of FVS0301/500 Sheet

66 ORIGINAL PAGE

BLACK AND WHITE PNOTOGRAPH

;5

i

i



ORIGINAL PAGE'

BLACK AND WHITE PHOTOGRAPH

. J

Fig. 19 TEM Mlcrographs of FVS0611/300 Sheet
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Fig. 21 TEM M'crographs of FVS06111500 Sheet
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Fig. 22 TEM Micrographs of FVS0812J300 Sheet W
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Fig. 25 TEM Micrographs of FVS1212/300 Sheet
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Fig. 26 TEM Micrographs of FVS1212/400 Sheet
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Fig. 27 TEM Mlcrographs of FVS1212/500 Sheet
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Fig. 62 TEM Mlcrographs of FVS0812/300 Specimen Deformed at 600°C (1112°F) and 2.2 _1
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base metal shear strength were achieved. The mechanical properties and microstructural

characteristics of the alloys were investigated.
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